Sampling the structure and chemical order in assemblies of ferromagnetic nanoparticles by nuclear magnetic resonance
نویسندگان
چکیده
Assemblies of nanoparticles are studied in many research fields from physics to medicine. However, as it is often difficult to produce mono-dispersed particles, investigating the key parameters enhancing their efficiency is blurred by wide size distributions. Indeed, near-field methods analyse a part of the sample that might not be representative of the full size distribution and macroscopic methods give average information including all particle sizes. Here, we introduce temperature differential ferromagnetic nuclear resonance spectra that allow sampling the crystallographic structure, the chemical composition and the chemical order of non-interacting ferromagnetic nanoparticles for specific size ranges within their size distribution. The method is applied to cobalt nanoparticles for catalysis and allows extracting the size effect from the crystallographic structure effect on their catalytic activity. It also allows sampling of the chemical composition and chemical order within the size distribution of alloyed nanoparticles and can thus be useful in many research fields.
منابع مشابه
Structure and Magnetic Properties of Oxide Nanoparticles of Fe-Co-Ni Synthesized by Co-Precipitation Method
Oxide nanoparticles of Fe-Co-Ni were prepared in six different compositions by co-precipitation method. The as-synthesized nanoparticles were characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron microscope (FESEM), Fourier Transform Infrared (FT-IR) and Vibrating Sample Magnetometer (VSM). It was found that the nanoparticles had mean crystalline size of 30-55 nm and spher...
متن کاملPreparation of Fe Substituted ZnO Nanoparticles and Investigation of Their Magnetic Behaviors
Nano-powders of diluted magnetic semiconductor Zn1-xFexO (0.0≤ x ≤0.1) were prepared via the sol-gel auto-combustion method. Crystal structure and phase identification carried out by X-Ray Diffraction (XRD) analysis. Mean crystallite size of the powders was estimated by Scherrer's formula. As M-H loops of the Fe substituted ZnO showed ferromagnetic behavior. The result...
متن کاملReverse chemical co-precipitation: An effective method for synthesis of BiFeO3 nanoparticles
The reverse co-precipitation method was used for synthesis of the pure phase multiferroic BiFeO3 (BFO) nanoparticles. Influence of different pH values on the microstructure and magnetic properties of the BFO nanopowders was investigated. Thermogravimetric-differential thermal analysis (TG-DTA) technique indicated that the optimal temperature for calcination is 550°C. The phase formation and the...
متن کاملNUCLEAR MAGNETIC RESONANCE STUDY OF THE STRUCTURE OF GLYOXALDIHYDRAZONE
Study of the nuclear magnetic resonance spectra of glyoxaldihydrazone in dimethylsulfoxide and deuterochlorofonn leads to the conclusion that this compound exists predominantly in non-chelate structure
متن کاملSpinel-Type Cobalt Oxide (Co3O4) Nanoparticles from the mer- Co(NH3)3(NO2)3 Complex: Preparation, Characterization, and Study of Optical and Magnetic Properties
In this paper, the mer-Co(NH3)3(NO2)3 complex was used as a new precursor for synthesizing spinel-type cobalt oxide nanoparticles (Co3O4NPs).Thermal decomposition of the complex at low temperature (175 °C) resulted in the Co3O4NPs without using expensive and toxic solvents or complicated equipment. XRD, FT-IR, SEM, EDX, and TEM were employed to characterize the product, and its optical and magn...
متن کامل